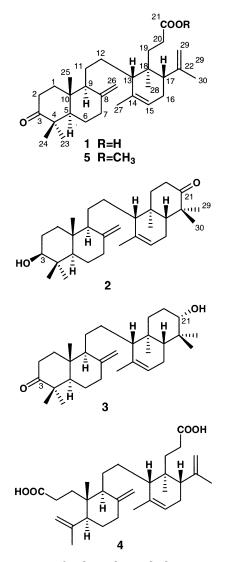
New Onoceranoid Triterpene Constituents from Lansium domesticum

Tadamitsu Tanaka,[†] Masami Ishibashi,^{*,†} Haruhiro Fujimoto,[†] Emi Okuyama,[†] Takashi Koyano,[‡] Thaworn Kowithayakorn,[§] Masahiko Hayashi,[⊥] and Kanki Komiyama[⊥]

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan, Temko Corporation, 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan, Department of Horticulture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand, and The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan

Received May 24, 2002


Three new natural onoceranoid triterpenes, lansionic acid (1), 3β -hydroxyonocera-8(26),14-dien-21-one (2), and 21α -hydroxyonocera-8(26),14-dien-3-one (3), were isolated from the fruit peel of *Lansium domesticum* together with two known triterpenoids (4 and 5), and their structures were elucidated from spectral data. These triterpenoids exhibited mild toxicity against brine shrimp (*Artemia salina*).

Lancium domesticum Corr. (Meliaceae) is a popular fruit in southern Asia, and the peel of this fruit, traditionally, is said to be toxic to animals. Previous studies revealed that this plant contained several types of triterpenoids.^{1–4} During our search for bioactive natural products from tropical plants, we investigated the chemical constituents of the peel of *L. domesticum* collected in Thailand. Here we describe isolation and structure elucidation of three new naturally occurring triterpenoids (1–3) together with two known triterpenoids (4 and 5).

The peel of *L. domesticum*, collected in Thailand, was extracted with MeOH, and the extract showed toxicity against *Artemia salina*.⁵ The MeOH extract was subjected to solvent partitioning and repeated chromatographies to give three triterpenoids (1–3), together with known compounds, lansic acid (4)^{1.3} and methyl ester (5).³ Compounds 1–3 have been isolated here as natural products, but 2 and 3 were previously reported as synthetic intermediates for chemical synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α , γ -onoceradiented in the synthesis of lansic acid (4) from α .

Lansionic acid (1) was shown to have the molecular formula C₃₀H₄₆O₃ by HRFABMS. The IR spectrum of 1 showed a broad absorption band at $3400-2800 \text{ cm}^{-1}$ and a strong absorption at 1710 cm⁻¹, indicating the presence of carboxyl and ketone groups. The ¹H NMR spectrum of 1 showed signals due to six tertiary methyls, and its ¹³C NMR spectrum aided by HMQC experiments revealed the presence of a trisubstituted olefin ($\delta_{\rm C}$ 135.8 and 121.8), two exomethylenes ($\delta_{\rm C}$ 147.5, 147.6, 107.6, and 114.0), a ketone $(\delta_{\rm C} 217.2)$, and a carboxyl group $(\delta_{\rm C} 178.0)$. Since five out of eight unsaturation degrees were thus accounted for, 1 was inferred to have three rings. The HMBC spectrum of 1 showed correlations consistent with the 21,22-secoonocerane skeleton, and the spectral features of 1 were similar to those of methyl lansionate (5),^{3,7} concurrently isolated here, and lansiolic acid,^{3,6} which possesses a hydroxyl group on C-3 and was previously isolated from the same plant. Treatment of 1 with trimethylsilyldiazomethane afforded the methyl ester (5). Thus, lansionic acid (1) was concluded to be 3-dehydrolansiolic acid.

Compounds **2** and **3** had the same molecular formula $(C_{30}H_{48}O_2)$ as determined by their HRFABMS data. The

¹H NMR spectrum of **2** showed signals due to seven tertiary methyls, and its ¹³C NMR and HMQC spectra revealed the presence of a trisubstituted olefin ($\delta_{\rm C}$ 135.8 and 121.7), an exomethylene ($\delta_{\rm C}$ 148.1 and 106.9), a ketone ($\delta_{\rm C}$ 217.3), and an oxymethine group ($\delta_{\rm C}$ 79.5). The IR spectrum of **2** suggested the presence of hydroxyl and ketone groups. The HMBC spectrum of **2** showed the ketone group on C-21 and the hydroxy group on C-3. Double bonds at $\Delta^{8,26}$ and $\Delta^{14,15}$ were also indicated from its HMBC correlations. The

10.1021/np020239o CCC: \$22.00 © 2002 American Chemical Society and American Society of Pharmacognosy Published on Web 09/19/2002

 $[\]ast$ To whom correspondence should be addressed. Tel and Fax: +81-43-290-2913. E-mail: mish@p.chiba-u.ac.jp.

[†] Chiba University.

[‡] Temko Corporation.

[§] Khon Kaen University.

¹ The Kitasato Institute.

hydroxy group on C-3 was suggested to be β -equatorial from the NOE correlations observed for H-3/H₃-23, H₃-23/ H-5, and H₃-24/H₃-25. Compound **3** had spectral data very similar to those of **2**; the differences between **2** and **3** were the positions of the ketone and hydroxy groups. The HMBC spectrum of **3** showed that the ketone group was on C-3 and the hydroxy group on C-21. The hydroxy group on C-21 was shown to be α -equatorial from the NOE correlations observed for H-21/H₃-30, H₃-30/H-17, and H₃-29/H₃-28. Thus, compounds **2** and **3** were identified as 3β -hydroxyonocera-8(26),14-dien-21-one (**2**) and 21 α -hydroxyonocera-8(26),14-dien-3-one (**3**), both of which were previously prepared from α , γ -onoceradienedione by NaBH₄ reduction.^{6,8} The NMR data of **2** and **3** are also reported here for the first time.

Triterpenes **1**–**5** all showed moderate toxicity against *Artemia salina* (brine shrimp) at a concentration of 100 μ g/mL. Trypsin inhibitory activities of these onoceranoid triterpenes (**1**–**5**) were also examined, but all were inactive.⁹

Experimental Section

General Experimental Procedures. Optical rotations were recorded on a JASCO J-20 instrument. IR spectra were measured on KBr disks in a Hitachi 260-10 infrared spectro-photometer. NMR spectra were recorded on JEOL JNM GSX-A400, A500, and ecp600 spectrometers. High-resolution fast atom bombardment (HRFAB) mass spectra were acquired on a JMS HX-110 mass spectrometer.

Plant Materials. Fruit peels of *Lansium domesticum* were collected in Khon Kaen, Thailand, in September 2000. A voucher specimen is maintained at the Department of Horticulture, Faculty of Agriculture, Khon Kaen University.

Extraction and Isolation. The air-dried fruit peels (125 g) were extracted with MeOH (700 mL \times 2). The MeOH extract (27.1 g) was partitioned between hexane (100 mL \times 2) and 10% aqueous MeOH (100 mL), and the aqueous phase was further extracted with EtOAc (100 mL \times 3) and *n*-BuOH (100 mL \times 2) to give four fractions (hexane phase, 8.7 g; EtOAc phase, 6.1 g; n-BuOH phase, 2.1 g; aqueous phase, 8.6 g). A part of the EtOAc-soluble fraction (5.7 g) was subjected to silica gel column chromatography (column A; 4.0 imes 23 cm) eluted with 0-100% EtOAc/hexane. The fraction eluted with EtOAc/ hexane (2:1) contained 4 (566 mg). The fraction eluted with EtOAc/hexane (1:2) was further separated by gel filtration with Sephadex LH-20 (2.2 \times 40 cm) eluted with EtOAc, followed by separation by MPLC on ODS (Ultrapack ODS-S-50A, 10 imes300 mm, Yamazen; eluent, 90% CH₃CN; flow rate, 7 mL/min) to yield 1 (113.5 mg, t_R 22 min), 2 (14.3 mg, t_R 30 min), and 5 $(3.7 \text{ mg}, t_{\text{R}} 39 \text{ min})$. Another fraction from column A eluted with EtOAc/hexane (1:2) was further separated by repeated chromatographies on Sephadex LH-20 (2.2×50 cm, eluted with MeOH), on a silica gel column [1.5×50 cm, eluted with EtOAc/hexane $(3:1\rightarrow1:0)$, and finally purified with HPLC on ODS (Develosil ODS HG-5, 10×250 mm; eluent, 95% MeOH) to give **3** (2.5 mg, $t_{\rm R}$ 24 min). The spectral data of **4** and **5** were identical with those published in the literature.³

Lansionic acid (1): colorless amorphous solid; $[\alpha]^{25}_{D} + 34^{\circ}$ (*c* 2.7, MeOH); IR (KBr) ν_{max} 3400–2800, 1710, 1640, 1460, 1380, and 890 cm⁻¹; ¹H NMR (CDCl₃) δ_{H} 5.36 (1H, br s; H-15), 4.89 and 4.61 (each 1H, s; H₂-26), 4.81 and 4.77 (each 1H, s; H₂-29), 2.61 and 2.38 (each 1H, m; H₂-2), 2.43 and 2.27 (each 1H, m; H₂-20), 2.43 (2H, m; H₂-7), 2.20 (H, m; H₂-17), 2.19 and 1.86 (each 1H, m; H₂-16), 2.02 and 1.57 (each 1H, m; H₂-1), 1.82 (1H, m; H-13), 1.76 (3H, s; H₃-30), 1.72 (1H, m; H₃-27), 1.69 and 1.48 (each 1H, m; H₂-6), 1.68 (2H, m; H₂-19), 1.67 and 1.39 (each 1H, m; H₂-11), 1.06 (1H, m; H-5), 1.61 (1H, m; H-9), 1.21 (2H, m; H₂-12), 1.07 (3H, s; H₃-23), 1.00 (3H, s; H₃-24), 0.84 (3H, s; H₃-25), and 0.81 (3H, s; H₃-28); ¹³C NMR (Table 1); FABMS *m*/2 455 (M + H)⁺; HRFABMS *m*/2 455.3492 [calcd for C₃₀H₄₇O₃, (M + H) 455.3525].

Table 1. ¹³C NMR Spectral Data of Compounds 1–3 in CDCl₃

	init opeen al Data	or compounds 1	0 0
	1	2	3
position	$\delta_{ m C}$	δ_{C}	$\delta_{\rm C}$
1	37.6	37.2	37.8
2	34.7	27.9	34.7
3	217.2	79.5	217.2
4	47.8	39.1	47.8
5	55.1	54.7	55.2
6	25.1	24.8	25.7
7	37.8	38.0	37.9
8	147.5	148.1	147.4
9	57.5	56.6	56.6
10	39.3	39.2	38.7
11	26.3	25.5	23.5
12	27.2	23.9	25.1
13	48.3	54.3	55.3
14	135.8	135.8	135.2
15	121.8	121.7	122.1
16	29.4	24.0	25.8
17	49.2	51.5	49.6
18	38.7	36.4	36.5
19	32.6	38.1	37.2
20	28.6	34.7	27.4
21	178.0	217.3	79.2
22	147.6	47.5	39.2
23	25.9	28.2	26.0
24	21.7	15.4	21.6
25	14.1	14.6	14.2
26	107.6	106.9	107.6
27	22.9	22.2	22.3
28	16.3	13.3	13.6
29	114.0	22.1	15.1
30	22.8	24.9	17.9

3β-Hydroxyonocera-8(26),14-dien-21-one (2): colorless amorphous solid; $[α]^{25}_D - 19^\circ$ (*c* 1.1, MeOH); IR (KBr) $ν_{max}$ 3450, 1710, 1450, and 1380 cm⁻¹; ¹H NMR (CDCl₃) δ_H 5.40 (1H, br s; H-15), 4.85 and 4.54 (each 1H, s; H₂-26), 3.26 (1H, dd, J =11.8 and 4.3 Hz; H-3), 2.76 and 2.26 (each 1H, m; H₂-20), 2.46 and 1.46 (each 1H, m; H₂-19), 2.12 and 1.80 (2H, m; H₂-12), 2.07 and 1.97 (each 1H, m; H₂-7), 1.96 and 1.43 (each 1H, m; H₂-16), 1.81 and 1.17 (each 1H, m; H₂-1), 1.76 and 1.62 (each 1H, m; H₂-2), 1.71 (1H, m; H₃-27), 1.65 (H, m; H₂-17), 1.64 and 1.42 (each 1H, m; H₂-6), 1.64 (1H, m; H-13), 1.59 (1H, m; H-9), 1.28 (2H, m; H₂-11), 1.13 (1H, m; H-5), 1.08 (3H, s; H₃-28), 0.76 (3H, s; H₃-24), and 0.67 (3H, s; H₃-25); ¹³C NMR (Table 1); FABMS *m*/*z* 441 (M + H)+; HRFABMS *m*/*z* 441.3719 [calcd for C₃₀H₄₉O₂, (M + H) 441.3733].

21α-**Hydroxyonocera-8(26),14-dien-3-one (3):** colorless amorphous solid; $[\alpha]^{25}{}_{D} - 7.5^{\circ}$ (*c* 0.11, MeOH); IR (KBr) ν_{max} 3450, 1710, 1460, and 1390 cm⁻¹; ¹H NMR (CDCl₃) δ_{H} 5.37 (1H, br s; H-15), 4.89 and 4.60 (each 1H, s; H₂-26), 3.23 (1H, dd, J = 11.0 and 5.0 Hz; H-21), 2.41 (2H, m; H₂-7), 2.37 (2H, m; H₂-2), 2.01 and 1.93 (each 1H, m; H₂-1), 1.95 and 1.92 (2H, m; H₂-1), 1.76 and 1.06 (each 1H, m; H₂-1), 1.69 and 1.51 (2H, m; H₂-12), 1.68 (1H, m; H₃-27), 1.64 (1H, m; H-9), 1.60 (2H, m; H₂-20), 1.57 (1H, m; H-13), 1.57 (1H, m; H₂-17), 1.49 (2H, m; H₂-16), 1.35 (2H, m; H₂-6), 1.16 (H, m; H₂-17), 1.08 (3H, s; H₃-23), 1.01 (3H, s; H₃-24), 0.95 (3H, s; H₃-30), 0.83 (3H, s; H₃-25), 0.82 (3H, s; H₃-29), and 0.69 (3H, s; H₃-28); ¹³C NMR (Table 1); FABMS m/z 441 (M + H)⁺; HRFABMS m/z 441.3745 [calcd for C₃₀H₄₉O₂, (M + H) 441.3733].

Acknowledgment. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan, and by a Grant-in-Aid for the Shorai Foundation for Science and Technology, the San-Ei Gen Foundation for Food Chemical Research, the Takano Foundation for Agricultural Chemistry Research, and the Suzuken Memorial Foundation.

References and Notes

 Kiang, A. K.; Tan, E. L.; Lim, F. Y.; Habaguchi, K.; Nakanishi, K.; Fachan, L.; Ourisson, G. Tetrahedron Lett. 1967, 3571–3574.

- (2) Nishizawa, M.; Nishide, H.; Hayashi, Y.; Kosela, S. Tetrahedron Lett.

- Nishizawa, M.; Nishide, H.; Hayashi, Y.; Kosela, S. *Tetrahedron Lett.* **1982**, *23*, 1349–1350.
 Nishizawa, M.; Nishide, H.; Kosela, S.; Hayashi, Y. *J. Org. Chem.* **1983**, *48*, 4462–4466.
 Nishizawa, M.; Nademoto, Y.; Sastrapradja, S.; Shiro, M.; Hayashi, Y. *J. Org. Chem.* **1985**, *50*, 5487–5490.
 Ômura, S.; Enomoto, Y.; Shinose, M.; Takahashi, Y.; Iwai, Y.; Shiomi, K. *J. Antibiot.* **1999**, *52*, 61–64.
 Nishizawa, M.; Nishide, H.; Kuriyama, K.; Hayashi, Y. *Chem. Pharm. Bull.* **1986**, *34*, 4443–4446. No spectral data of compounds **2** and **3** were described in this literature.
- (7) Compound 5 (methyl lansionate) was also first isolated here from extracts of natural source, but it had been prepared from lansiosides A-C through methanolysis, and the spectral data of 5 were previously described in the literature.³
- (8) Habaguchi, K.; Watanabe, M.; Nakadaira, Y.; Nakanishi, K.; Kiang, A. K.; Lim, F. Y. Tetrahedron Lett. 1968, 3731-3734.
- (9) Cannell, R. P.; Kellam, S. J.; Owsianka, A. M.; Walker, J. M. Planta Med. 1988, 10-14.

NP020239O